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Abstract

We investigate the formation of clusters in a rapidly expanding mixture of a condensable vapor and a
carrier gas similar to the experimental situation of a molecular beam.

The system is divided into small disks which change their volume via a given time programm. The
temperature of the disk results from the expansion law but changes additionally because of the latent heat
released during the cluster formation.

The kinetics is described by a master equation. The transition probabilities obey the condition of detailed
balance and reflect the attachment and detachment of single particles as well as coagulation and split of
clusters.

The discussion presents an estimation of the onset of cluster formation in a gas of free particles and a
possible scenario of the evolution of the cluster distribution into a frozen state.

1. Introduction

The investigations of cluster formation in expanding molecular beams started in the fifties
with pioneering papers of BECKER and others [1]. In the last ten years this field has attracted
considerable exerimental as well as theoretical attention [2—8]. Much of the work has been
motivated by a strong interest in applications to surface technology, heterogeneous catalysis,
and microelectronics. In spite of this high level of interest it is still true that the mechanism of
cluster formation in many systems of practical importance is not well understood till now and
a complete theory of cluster formation under changing conditions is still in request.

Subsequently to earlier studies of nucleation processes [9—12] this paper aims to present a
model of the cluster formation in a conically expanding nozzle beam.
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2. Model of the Expanding Molecular Beam

In the following we discuss a simple model of the experimental situation. Let us consider a
chamberwithasmallnozzle of diameterd = 2R, (seeFig. 1 a). Inside the chamber a gas mixture,
consisting of a carrier gas and a condensable vapour, exists under atmospheric pressure, outside
the chamber we have nearly a vacuum.
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Fig. 1a. Sketch of the adiabatic expansion from a molecular beam chamber

Fig. 1b. Model to describe the conical expansion by means of small disks (thickness Az, radius Rg)

The gas mixture expands in a conical form into the vacuum with a scattering angle «, which
depends on the geometric form of the nozzle. The mean velocity vy, of the gas stream when just
leaving the chamber is governed by the nozzle formtoo, further by the pressure and temperature
gradients and the molar mass of the carrier gas. In the model considered here both values, o and
Vm, are taken as adjustable parameters (e.g. o = 15°, v, = 103 m/s).

In orderto describe the expanding gas mixture we propose the following model (see Fig. 1b):
The conus with thelengthz = v,¢, vbeing the velocity in the spatial dimension z, isdivided into a
number of small disks (indicated by s) with a length A z. Assuming A z very small, the volume V,
of each disk can be approximated by a cylindric form, that means V, = ;tR,? A z. R, is the Radius
of the disk of number s, depending on time and the parameters « and V, as follows:

R,(f) = Ry + v, tsinc. 2.1
That means with ¢t = sA¢
V() =Ry + v,5At sinx)? Az 2.2)

where At is time of delay for the gas particles in every disk, approximately given by
At= AJv,

Assuming in a first approximation, that the velocity v,, which describes the motion of the disk
in the spatial dimension z, is kept constant and equal to v,,,, the mean velocity at the pointz = 0.

To choose a proper value of Az we assume that the relevant distance z for cluster formation
after leaving the chamber is about 10 diameters d of the nozzle. Assuming d = 1 mm and
dividing the volume of the relevant cone into 1000 disks, it yields Az = 10" mand A ¢ = 10785
for the time of delay.

Due to the conical expansion of the gas mixture a strong undercooling occurs, whichleadstoa
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highly supersaturated state. The temperature difference AT = T, — T, between neighbor-
ing disks (s — 1, s) for a nearly free adiabatic expansion has an order of magnitude of 1072 to
1 K and results from

Ts = Ts—l (Vs—l/Vs)M_l (23)

% being the adiabatic exponent.
Averaging over the 1000 disks, this means a spatial cooling rate

0= (TIOOO - To)/l 000 Az (24)

of about 10* K/m, and with respect to the velocity v, we have an average temporal cooling
rate

T = (T1000 — To)/(1000A7) = dv, (2.5)

of about 107 K/s.

Inside the disk volume V, we assume a global thermal equilibrium. This is satisfied, since
the frequency of collisions between the particles of the gas is about 10°* s™! m~3, that means
for a duration time At = 1078 s about 10'* collisions in every disk volume, rather enough to
equalize local temperature and density inhomogenities. In spite of this fact, the thermody-
namic state of the disk is rather far from equilibrium because of the high supersaturation.

3. Cluster Formation during Adiabatic Expansion

3.1. Thermodynamic Assumptions
Caused by the large supercooling the expanding gas mixture undergoes a supersaturated
state, which makes a formation of supercritical clusters possible. Therefore, we must
consider that the particles of the condensable vapour are distributed in clusters of different
sizes. Introducing a discrete cluster distribution [9—12] in a given disk s:

N= {N(), Nl,N2,...Nn_1, Nn} (31)
where Ny is the number of particles of the carrier gas, N, is the number of free particles of the
condensable vapour (monomers), N, the number of dimers, . .., N, the number of clusters of

size n, that means they consist of n particles.
In order to describe the evolution of the cluster distribution during the expansion of the gas
mixture we make the following assumptions:

(i) The gas is expanding radially without changing the total number of particles per disk, N,
given by:

N; = N, + Ng = const. (3.2)

N, means the total number of particles of the condensable vapor, which are able to create
clusters. Let us note, that the cluster distribution (3.1) here refers to one disk s in our
model, that means, the N, are all functions of the disk number too, althrough no
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explicitely written here. With respect to N (3.1) it yields:
N
No = const., N, = 5 nN, = const. ' 3.3)

n=1
For the maximum number of clusters of a given size n resuits:
0=N,=N,/n (3.4

(ii) Since the expanding cloud of particles is adiabatically isolated from the surrounding, the
internal energy U of the cluster distribution per disk volume V, is constant for a definite
total particle number N, and a constant volume V. Assuming an ideal mixture of clusters
of different kinds and free particles, the internal energy of the isolated system has been
given previously [11, 12]:

a
aT

v, Vo =5 N S aTor s -1 22 (3.5)
Here f, is a potential term characterizing the free energy of a cluster of size n. It is
specified later, for the moment we consider only its temperature dependence.

Caused by the heat isolation (ii) the actual temperature 7 in the volume V, can be changed
because of the latent heat released during the cluster formation. We assume that T for a given
volume V is a global parameter. Its dependence on the cluster distribution N can be obtained
by means of the conservation of energy (eq. (3.5.) as follows:

N
U-—- Z ann
T,(U, Vy, N) = = : (3.6)
N 3 of,
Ny 2y — 2L
nzo { 2 B oT =T }

We note here, that the change of T caused by the cluster formation strongly depends on the
magnitude of the carrier gas (n = 0). It has been discussed [11], that for a large ratio of No/N,,
the temperature increases only very little during the cluster formation.

Assuming an ideal gas mixture we may further express the actual pressure p; in the volume
element V, as follows:

N kB Ts (N)

mm=§m—7~- (3.7)

The proper thermodynamic potential to describe the cluster distribution N with respect to a
constant internal energy U, a given total particle number N and a fixed volume V; is the
entropy S. It has been given in previous works [11, 12]:

S.;(N>=2N,,{ —%—k In —m ikg} (3.8)

Here A, is the de Broglie wavelength:
ML) = M (TYn~ " = hQaum ky Te) ™2 n~ 2. (3.9
The value of the entropy depends on time because of V,(f) (eq. 2.2), N(¢) and T,(?) (eq. 2.3).
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3.2. Kinetic Assumptions

The cluster evolution during the gas expansion is presented by the time development of the
distribution N = {Ng, N1...Np,}. In order to discuss this evolution we suppose, that the
cluster growth and shrinkage may be expressed by a stochastic reaction, which is denoted in
terms of chemical kinetics [12]:

An+ Ay 22 Ay n,m=0, (3.10)

w

A, is a cluster of size n which “reacts” with another cluster of size m; wt and w™ are the
transition probabilities per unit time of the stochastic reaction in the given direction. They will
be specified afterwards.

The reaction equation (3.10) includes a variety of possible processes:

(i)  Form = 0 we consider impects of clusters or particles of the condensable vapour with
these of the carrier gas, which results in a temperature relaxation in the system.

(i) Form = 1 the cluster growth and shrinkage is due only to an attachment or evaporation
of monomers of the condensable vapour (cluster-particle interaction).

(iii) For m = 2 the cluster growth occurs by the incorporation of other clusters, that means
coagulation — or, in the opposite direction, a break of a large cluster into pieces is
considered (cluster-cluster interaction).

Interactions between more than two participates may be approximated by successive reactions
of two of them, like:

AK + Am + An = AK + Am+n zAK;uz%—n (3 1 1)

3.3. Dynamic Model of the Cluster Formation during Expansion

The dynamics of our model is based on discrete time steps 7.

(i) At the time ty we start with a given cluster distribution ¥ in a volume Vo = Ry z, the
temperature is given by T, which is related to the internal energy U via eq. (3.5).

(i) Inthe first time step the volume Vyis expanded viaeq. (2.2), the new value V, resultsin a
new temperature 7.

(iii) During the time of delay, A ¢, the volume V; is kept constant, but the cluster distribution
N may change via the reactions (3.10). Because of the latent heat produced or consumed
during cluster formation or splitting, the temperature T, changes too via eq. (3.9).

(iv)  After the time At we have a new cluster distribution N and a new temperature T, which
mark the initial values for the next time step: It begins with a further expansion (ii).
During the expansion the cluster distribution is kept constant again, but the temperature
and the volume are changing. The dynamics continues with (iii).

The basic assumption of this dynamic approach means that the thermodynamic equalization
with respect to the velocity distribution and the corresponding temperature during the
expansion is reached in a much shorter time than the clusters need for a change of their
composition. We believe that this condition is satisfied for a sufficiently wide range of
experimental conditions.
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This assumption allows us to separate in our theoretical description the act of expansion
(with a constant cluster distribution) from the act of changing the cluster distribution (in a
constant volume). The temperature will change in both of these different processes, and it
depends on the concrete parameters, which process results in a more considerable change of
T,. This fact should depend remarkable on the ratio of the carrier gas No/N, [11].

4. Stochastic Approach to the Cluster Formation

4.1. Master Equation and Equilibrium Probability Distribution

From a statistic point of view every possible cluster distribution Nin a certain disk is found
with a certain probability for a given time, defined by

P(N,?) = P(No,N;N»...Ny... Ny, D). @.1)

If the kinetics is assumed as an Markovian discrete process, the dynamics of the probability
P(N, 1) obeys a master equation:

3PN, _

Py Y {w(N|N)YP(N',t) —w(N' | N) P(N,0)} . (4.2)
o

The quantities w(N' | N) are the transition probabilities per unit time for the transition from N
to N'. N’ specifies those distributions which are attainable from the assumed distribution N
via the reactions (3.10).

We make the assumption that the kinetics of phase transition can be described by the
master equation (4.2) with transition probabilities, which are determined from a uniform
point of view both for the nucleation and the coagulation processes and their opposite
reactions.

The stationary solution of the master equation requires that 9P (NN, £/t = 0. From this
condition we find Y J(N| N') =0 with J(N| N') = w(N|N') PS(N') — w(N' | N) P°(N)
being the probability flux between the states N' and N. The stationary solution P° is the
equilibrium solution P°, since the system is not pumped [13]. It means J(N|N') =0
resulting in

w(N|N)PUN') = w(N' | N) P°(N). (4.3)

Here P°(N) is the equilibrium probability to find a certain cluster distribution. It can be
derived from microscopic considerations [11, 12]. As the result we have found:

S(U, V,,No,Ny...Ny,) = S(U, V,, Ny)
kg
where S(U, V,, N) is the entropy of a certain cluster distribution in a given volume element

Vs. S(U, V,, Ny) is the entropy of the N, particles system. It is constant for a given V, and
stands for the normalization [14].

P°(No, Ny...Ny) = exp (4.4)



W. EBELING et al.: Stochastic Approach to Cluster formation . .. 1119

4.2, Transition Probabilities

Inserting the equilibrium probability distribution P°(N) o exp(S(N)/kg) where S(N) is

given by eq. (2.9), into the condition of detailed balance, eq. (4.3), we arrive at:
w(N|N) =w(N'| N) exp SN - SIN). 4.5)
kg

We find that the transition probabilities w(N | N') and w(N' | N) are in a strong relation
due to the knowledge of the entropy S (V). Therefore only a kinetic assumption for one of the
transition probabilities is needed. The transition probability for the opposite process can be
determined by means of eq. (4.5).

The assumption to determine the transition probabilities from the condition of detailed
balance involves a chemical equilibrinm between all kinds of clusters. Stable vortex-like
solutions for the probability flux are forbidden in the final chemical equilibrium state.

For the assumed reactions (3.10) the distribution N and N' can be specified as follows

N= {NOleNZ"-Nn---Nm--~Nn+m-~~NNv} (46)
N = {No,NiNo...Ny—1...Np—1.. Nypm+1...Ny}.

That means the transition probability w(N' | N) is related to a cluster growth via the reaction
Ap+Ap—Apim.

We have to consider further that during a transition N— N’ also the temperature 7 (N) and
the pressure p (V) of the system change.

We make now the following assumption for the transition probability of cluster growth
[12]:

W(N' | N) = w" (N Npw) = Qi (T5) - NyNyJ Vs 4.7)

This ansatz agrees with usual assumptions of the kinetic theory of particle interactions in the
gaseous state [15]. It means that the probability of a reaction between two clusters of sizes n,
m increases with the number of clusters and decreases with the volume of the system. In the
case n = m we have to choose instead of eq. (4.7) wt (N,) ~ N, (N, — 1)/V,.

The parameter «, , (7) describes the time scale of the stochastic process. It is determined
in close relation to the classical kinetic gas theory. We choose the following ansatz [15]:

E 3

(xn,m(T) = n(rn + rm)z Vi, m €XP {_ _n_r_n_} (48)
kzT

r,, and r,, are the radii of the spherical assumed clusters, the value 7t (r, + r,,)* gives the total

cross section of the interaction of both clusters. v, ,, is the mean relative velocity of the

clusters refered to each other [15]:

172 .
Vn,m = {M} ; M — { m-n } % (49)
TU m+n) Nu

where p gives the reduced mass of the clusters; M is the molar mass and N4 the Avogadro
constant.
The exponential considers, that the clusters only react if their relative kinetic energy is
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larger than a certain amount E, which is known to be the activation energy E,, ,, = E4. Since the
kinetic energy obeys aBoltzmann distribution, only an amountexp (— E4/kg T) of collisions takes
place with an relative energy larger than Ej4.

In order to determine the opposite transition probability w (N | N') for the split of a cluster:
Aprm— Ay + A, wehave to calculate the exponential of eq. (4.5), taking into account thatin a
constant volume element v, the cluster distribution changes and due to the latent heat also the
temperature of the system. The result has been derived in a previous paper [12]. With a
transformation

N—>N', N'— N with N'={No, (No.. . Ny+ 1.. . Np+ 1. .Npr+1...Ny}

we arrived at:

) ~ N 372 1
w(N |N):W (Nm+;z):(8ﬂszT)1/2M<ﬁA> (rn+rm)2'Nm+” }\13(71)
- exp {.f;n-!—n —fn __f;n _ EA } . (410)
kBT kBT

The value AE = fop, — fin — o gives the change of the cluster energies for a reaction
A, + A, — A, ., Iftheclusterof size (m + n)ismore stable than thesingle clusters m, n, itholds
AE <0 (see Fig. 2). In this case a split of the large cluster into pieces is rather unprobably
because the energy barrier is higher for such a reaction than in the case of coagulation.
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Fig. 2. Energy levels for the coagulation of two small clusters with respect to the activation energy E4 [12]

5. Discussion

5.1. Determination of the Potential Term f,

Let us first discuss the term f,, which describes the potential cluster energy. For the free
particles of the carrier gas (n = 0) we definef, = 0. For the clusters of the condensable vapor we
choose a first approximation similar to the theory of atomic nuclei which includes only volume
and surface effects [12}):

fo= =AM (= 1)+ B(T) (n — 1)*°. (.1

The first term of eq. (5.1) corresponds to the binding energy in the cluster, the second term to the
surface energy. In particular it follows for the free pasticles of the condensable vapour
(monomers) f; = 0.
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In comparison with thermodynamic results the following expression for A was derived
[16]:

—tyTIn ZOM D)

A(T) = T

(5.2)
P*(T) means the equilibrium vapor pressure of the condensable vapor at the given tempera-
ture. Its temperature dependence is given by the known relation [17]:

, g [ 1 1 }
“(Ta) = p*(To)exp {— | — — — 5.3
P (Ty) = p*(To) p{kB[To TJ (3.3)
where q means the evaporation heat per particle.

The surface energy its proportional to the surface area and to the surface tension ©.
Assuming a spherical cluster it yields for the constant B [16]:

—2/3
B(T) = 4xo (4?“ ca> (5.4)

Cq 1s the particle density in the cluster. Due to the classical droplet model presumed here the
surface tension o and the particle density are assumed to be constant with respect to the
curvature.

5.2. Scenario of the Evolution of the Cluster Distribution

The model presented above can be studied by means of computer simulations using a
similar mechanism as in our previous papers [10, 12]. The results will be discussed in a
subsequent paper. Here we are dealt only with a general scenario of the evolution of the
cluster distribution during the adiabatic expansion. Let us discuss different situations
concerning the initial distribution which leaves the chamber.
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Fig. 3. Supersaturation y, and ratios V¢V, T¢/Ty vs. disk number s, distance z, time t respectively

(i) Assuming for the time, that the initial distribution consists only of free particles of the
condensable vapor and a magnitude of the carrier gas. Neglecting further the depletion of

73 Z. phys. Chemie, Bd. 271, H. 6
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free particles and the increase of the temperature during the cluster formation, the supersat-
uration in disk s is given by:

Ys = Nskb‘ Ts/VspS (Ts) . (55)

If the vapor in disk s = 0 is assumed to be saturated (yo = 1), Fig. 3 presents the initial
supersaturation (5.5) and the ratios V/V,, T,/T, in dependence of the disk number s. It is
shown, that despite small variations of V; and T in comparison with the initial values Vo, Ty
in a range of s =30 to 40 (that means 3 X 107* to 4x 10™*m behind the nozzle) the
_supersaturation reaches such a value, that a remarkable cluster formation should be expected.

(ii) Assuming now that inside the chamber an equilibrium cluster distribution has been
established (this depends mainly on the time of delay in the chamber). This distribution is
located around a certain stable cluster size n,. When the supersaturation increases during the
expansion, the former stable clusters are able to grow further, because the critical cluster size
decreases and the stable cluster size increases too. We expect, that the result of this new
growth process strongly depends on the two different time scales: If the supercooling is much
more faster than the process of cluster growth, the cluster distribution is not able to reach its
new equilibrium state during the short time, and we will find a non-equilibrium cluster
distribution, which is frozen. The clusters cannot grow further, if the average distance
between two elementary particles is growing faster by the expansion than it is decreasing by
the nucleation.
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